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We investigate, numerically and analytically, the structure and stability of steady
and quasi-steady solutions of the Navier–Stokes equations corresponding to stretched
vortices embedded in a uniform non-symmetric straining field, (αx, βy, γz), α+β+γ = 0,
one principal axis of extensional strain of which is aligned with the vorticity. These are
known as non-symmetric Burgers vortices (Robinson & Saffman 1984). We consider
vortex Reynolds numbers R = Γ/(2πν) where Γ is the vortex circulation and ν
the kinematic viscosity, in the range R = 1–104, and a broad range of strain ratios
λ = (β − α)/(β + α) including λ > 1, and in some cases λ � 1. A pseudo-spectral
method is used to obtain numerical solutions corresponding to steady and quasi-steady
vortex states over our whole (R, λ) parameter space including λ > 1, where arguments
proposed by Moffatt, Kida & Ohkitani (1994) demonstrate the non-existence of
strictly steady solutions. When λ� 1, R� 1 and ε ≡ λ/R� 1, we find an accurate
asymptotic form for the vorticity in a region 1 < r/(2ν/γ)1/2 6 ε−1/2, giving very good
agreement with our numerical solutions. This suggests the existence of an extended
region where the exponentially small vorticity is confined to a nearly cat’s-eye-shaped
region of the almost two-dimensional flow, and takes a constant value nearly equal
to Γγ/(4πν) exp[−1/(2eε)] on bounding streamlines. This allows an estimate of the
leakage rate of circulation to infinity as ∂Γ/∂t = (0.48475/4π)γε−1Γ exp

(
−1/2eε

)
with corresponding exponentially slow decay of the vortex when λ > 1. An iterative
technique based on the power method is used to estimate the largest eigenvalues
for the non-symmetric case λ > 0. Stability is found for 0 6 λ 6 1, and a neutrally
convective mode of instability is found and analysed for λ > 1. Our general conclusion
is that the generalized non-symmetric Burgers vortex is unconditionally stable to two-
dimensional disturbances for all R, 0 6 λ 6 1, and that when λ > 1, the vortex
will decay only through exponentially slow leakage of vorticity, indicating extreme
robustness in this case.

1. Introduction and motivation
1.1. Burgers vortex

Two important dynamical mechanisms active in the fine scales of turbulence are
known to be the intensification of vorticity through vortex stretching and the dissipa-
tion of energy produced in regions of large velocity gradients. This was first noted by
Taylor (1938) and later, Burgers (1948) found an exact solution to the Navier–Stokes
equations for a constant-density fluid that modelled these processes. Burgers’ solution
may be obtained by first decomposing the velocity field in Cartesian coordinates
(x, y, z) into an irrotational part corresponding to pure strain us = (αx, βy, γz) with
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α+β+γ = 0, and a rotational part confined to the (x, y)-plane, uω = (u, v, 0). The only
non-zero component of the vorticity, ω = ∇×u is that in the z-direction, ω = (0, 0, ω),
and the relevant vorticity equation then reduces to

∂ω

∂t
+ (αx+ u)

∂ω

∂x
+ (βy + v)

∂ω

∂y
= γω + ν∇2ω, (1.1)

∇2ψ = −ω, u =
∂ψ

∂y
, v = −∂ψ

∂x
, (1.2)

where ψ is the stream function. For the case of axisymmetric strain, α = β = −γ/2,
γ > 0, a steady solution of (1.1)–(1.2) is

ω =
γΓ

4πν
e−γ(x

2+y2)/4ν (1.3)

which induces the azimuthal velocity,

ûθ0
=

Γ

2πr
(1− e−γr

2/4ν), (1.4)

where Γ is the total circulation. We will refer to this solution as the axisymmetric
Burgers vortex with the Reynolds number defined as R = Γ/2πν. For the case of
plane strain α = −γ, β = 0, γ > 0, a steady flow solution of (1.1)–(1.2) is

ω = ω0e
−γx2/2ν , (1.5)

where ω0 is the maximum vorticity. This solution is often referred to as the Burgers
vortex layer.

1.1.1. Relevance to turbulence

Burgers vortices have been used to model various features of turbulence including
the energy spectrum in the range of dissipation wavenumbers (Townsend 1951) and
the nearly streamwise vortices which form in the braid region of the temporal mixing
layer (Lin & Corcos 1984). Interest in the properties of the Burgers vortex intensified
following large-scale numerical simulations of turbulence, for example Kerr (1985),
Vincent & Meneguzzi (1991), She, Jackson & Orszag (1990), Ashurst et al. (1987),
Ruetsch & Maxey (1991) and others, which indicated that regions of high vorticity
seemed to ‘self-organize’ into tube-like structures. Ashurst et al. (1987) demonstrated a
moderate correlation between the direction of the vorticity vector and that of the strain
eigenvector corresponding to the intermediate eigenvalue and this, together with the
tube observation, revived interest in the Townsend–Burgers model of the fine scales.
Whilst the structure of the Burgers vortex may be too simple to explain the principal
characteristics of the probability distribution of the longitudinal velocity gradients
(Saffman & Pullin 1996), the numerical experiments of Jiménez et al. (1993) do
provide evidence that the structure of the most intense vorticity, which occupies a small
fraction of the fluid volume and provides a small fraction of the dissipation, but which
may be responsible for the tails of the velocity-gradient probability density functions,
closely resembles Burgers vortices. Furthermore, Jiménez & Wray (1994) note that
whenever vortices are strongly stretched, the radius approaches the Burgers limit, and
that the cross-section of these long coherent vortices will be elliptical in nature.

1.1.2. Stability

Leibovich & Holmes (1981) addressed the global stability of the axisymmetric
Burgers vortex using an energy method but found that there existed no finite
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λ = 0, α = β = −γ/2, axisymmetric axial strain
0 < λ < 1, α < β < 0, non-symmetric axial strain
λ = 1, α = −γ, β = 0, plane strain

1 < λ < 3, β > 0, β < γ, biaxial strain
λ = 3, α = −2γ, β = γ, axisymmetric biaxial strain
λ > 3, β > γ, extreme biaxial strain
λ→∞, −α ≈ β� γ, two-dimensional strain limit

Table 1. Values of λ, α, and β in various classes of straining fields.

critical viscosity at which the vortex became unstable. They noted that this did
not indicate stability to all perturbations. Robinson & Saffman (1984, hereafter re-
ferred to as RS84), using perturbation methods, solved the corresponding linearized
stability problem through a series expansion in R, finding the Burgers vortex to be
linearly stable for small R. Prochazka & Pullin (1995) extended this result to show
that the axisymmetric Burgers vortex remains stable to infinitesimal two-dimensional
disturbances for R = 1–104.

1.2. Stretched vortices in non-symmetric strain

1.2.1. Symmetry considerations

Direct numerical simulations not only suggest the existence of vortex structures, but
also the tendency of these structures to persist over long periods of time, even when
their length reaches the integral scale of the flow (Vincent & Meneguzzi 1991). Flow
visualization by Douady, Coudet & Brachet (1991) of homogeneous turbulence has
also shown the existence of intense vortex tubes. In all these cases it seems reasonable
to suppose that the vortex tubes were present in regions where the strain was
not perfectly axially symmetric, suggesting the relevance of non-symmetric Burgers
vortices. Here it is convenient to consider, without loss of generality, cases where
α < 0 6 γ, β > α and define the field in terms of a single parameter, the strain ratio,
λ, where

α = − 1
2
(1 + λ)γ, β = − 1

2
(1− λ)γ, λ =

α− β
α+ β

. (1.6)

The strain ratio is non-negative and uniquely defines the strain into classifications
given in table 1. For λ > 3, it should be noted that the z-direction is no longer the
direction of maximum extensional strain.

1.2.2. Vortex structure

RS84 first proposed the generalized or non-symmetric Burgers vortex correspond-
ing to strain geometries intermediate between axisymmetric and plane strain. They
found numerically steady solutions at Reynolds numbers up to 100 and strain ratios
0.25 6 λ 6 0.75. They showed that increased non-symmetry of the strain tended to
increase the ellipticity of the vortex while increasing the circulation decreased the
ellipticity and rotated the vortex counterclockwise to a limit where the vortex was
aligned 45◦ to the axes of the strain. Kida & Ohkitani (1992), in a study of the
spatiotemporal intermittency of developed turbulence, found that vorticity tended to
be concentrated in long thin tube-like regions that resemble non-symmetric Burgers
vortices in structure. Moffatt, Kida & Ohkitani (1994, which we will refer to as
MKO94), developed a large Reynolds number asymptotic theory of stretched vortices
in non-symmetric straining fields. The structure of the vortices for the small parameter,
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λ/R, was given as a correction to that of a Burgers vortex. Jiménez, Moffatt & Vasco
(1996) showed the asymptotic results from MKO94 to be valid in a larger, elliptical
region. Furthermore, they provide evidence of vortices with elliptical structure in a
numerical simulation of decaying two-dimensional turbulence.

1.2.3. Stability

No comprehensive analysis of the stability of non-symmetric Burgers vortices
has been presented to date. Buntine & Pullin (1989) calculated several examples
of the relaxation of an initial vorticity distribution towards a non-symmetric state,
indicating at least some measure of the stability to two-dimensional disturbances for
λ < 1. MKO94 argued that the stretched vortices can survive for long times even
when two of the principal rates of strain become positive. From a far-field analysis
of the vorticity, they indicate that for biaxial strain, vorticity away from the core of
the vortex will behave like a passive scalar and be convected to infinity, therefore
eliminating the possibility of a true steady solution in the region λ > 1. They further
point out that there will be a tilt instability present for λ > 3. This corresponds to
β > γ in which case the y-axis will become the direction of maximum extensional
strain. A small perturbation of the vortex away from alignment with the z-axis, while
maintaining the rectilinear vorticity, will be followed by a rotation of the vortex-axis
on a time scale O(β − γ)−1. There will be eventual re-alignment with the y-axis, after
which a situation corresponding to 1 < λ < 3 will prevail. Indeed this instability
would be present for nominally two-dimensional compact vortex flows where a linear
(x, y)-plane strain field is present, and when tilting disturbances in three dimensions
are admitted.

1.3. Outline

We begin in §2 by utilizing an extension of the pseudo-spectral method of RS84 to
calculate solutions of the Navier–Stokes equations corresponding to non-symmetric
Burgers vortices, over a wide range of (R, λ) space. When R is large and λ > 1 we
have no difficulty in obtaining apparently steady solutions with vorticity at the level
of machine precision far from the vortex core. When λ � 1, our numerical results
suggest a method for obtaining an approximate analytical form for the vorticity field
outside the region studied by MKO94 but confined by the strain to a cat’s-eye-shaped
region of nearly two-dimensional flow. This approximation, developed in § 3, confirms
the exponentially small vorticity away from the core and also provides a means
of estimating the exponentially slow leakage and convection to infinity of vorticity
from the confinement zone. Our estimate of the decay rate of the circulation differs
substantially from MKO94.

The two-dimensional stability of non-symmetric Burgers vortices is studied in
§ 4. A Lagrangian convectively neutral mode corresponding to an arbitrary bulk
displacement of a general vorticity distribution embedded in a general linear velocity
field is identified. When applied to the steady generalized Burgers vortex, this implies
a convectively neutral stability which convects the vortex to infinity without change
of form when λ > 1. The normal mode stability of the numerically obtained non-
symmetric steady vortex solutions is studied in §5 using an extension of the power
method. For the cases studied at R = 1, 10, 100 and 1000, when 0 < λ < 1
(non-symmetric axial strain), the largest eigenvalue always corresponds to the above-
mentioned convectively neutral instability mode which, for this range of λ, convects
small bulk displacement of the vorticity field into the undisturbed centre of vorticity.
This implies stability of the non-symmetric Burgers vortices for 0 6 λ < 1, for all R.
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When λ > 1, the convectively neutral mode is also found and the algebraically second
largest eigenvalue is zero to the accuracy of our calculation.

2. Structure of non-symmetric Burgers vortices
2.1. Basic equations

Unless otherwise noted, all quantities are henceforth non-dimensionalized using the
length and time scales (2ν/γ)1/2 and 2/γ respectively. In addition, in order to fix the
circulation in the scaled form, the magnitude of the non-dimensional vorticity and
streamfunction are scaled on the Reynolds number. Equations (1.1)–(1.2) become

∂ω

∂t
=
∂2ω

∂x2
+
∂2ω

∂y2
+ [(1 + λ)x− Ru]∂ω

∂x
+ [(1− λ)y − Rv]∂ω

∂y
+ 2ω, (2.1)

∇2ψ = −ω, u =
∂ψ

∂y
, v = −∂ψ

∂x
, (2.2)

where ω, ψ, u, v, x, y, and t, now denote dimensionless variables without change of
notation. This equation has three notable solutions. First, there is the axisymmetric
Burgers vortex solution, valid for all R at λ = 0,

ω = e−(x2+y2)/2. (2.3)

Second, we have,

ω = (1− λ2)1/2 e−((1+λ)x2+(1−λ)y2)/2, (2.4)

which is valid for all λ at R = 0, and third, for plane strain, there exists the Burgers
vortex-layer solution,

ω = ω0 e−x
2

, (2.5)

which holds for λ = 1 for all ω0, but does not correspond to a confined vorticity
distribution and will not be studied here, but is referred to in § 3.

2.2. Numerical method

2.2.1. Pseudo-spectral method

Here we investigate numerically steady solutions to (2.1) for general λ > 0. We
assume that ω(x, y) decays exponentially when r = (x2 + y2)1/2 → ∞ independent of
direction. This allows use of a collocation method to approximate the vorticity with
the double series of sinc functions in x and y (see RS84),

ω(x, y) =

M∑
k=−M

N∑
l=−N

ωklS(k, hx; x)S(l, hy; y), (2.6)

where

S(j, h; ζ) =
sin[(π/h)(ζ − jh)]

(π/h)(ζ − jh) (2.7)

in a rectangular domain defined by collocation points (xi, yj) = (ihx, jhy), i = −M . . .M,
j = −N . . . N, where ωkl are coefficients to be determined and M,N are specified
series-truncation parameters. Integration and differentiation of the sinc function can
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be approximated using∫ +∞

−∞
ω(x, y)dx= hx

M∑
k=−M

N∑
l=−N

ωklS(l, hy; y),

∂nω

∂xn
(x, y) =

M∑
k=−M

N∑
l=−N

(
h−nx

M∑
p=−M

δ
(n)
pk ωpl

)
S(k, hx; x)S(l, hy; y).


(2.8)

We will only need n = 1, 2, for which

δ(1)
mn =

(−1)n−m

n− m (1− δnm), δ(2)
nm = − 1

3
π2δnm −

2(−1)n−m

(n− m)2
(1− δnm). (2.9)

The Poisson equation (2.2) may be solved in terms of the Fourier transform of the
vorticity ω̂, from which the velocity components may be expressed as

u = −∂ψ
∂y

=
−i

(2π)2

∫ ∞
−∞

∫ ∞
−∞

ηω̂

ξ2 + η2
e−i(ξx+ηy)dξdη, (2.10)

v =
∂ψ

∂x
=

i

(2π)2

∫ ∞
−∞

∫ ∞
−∞

ξω̂

ξ2 + η2
e−i(ξx+ηy)dξdη. (2.11)

Then, taking the Fourier transform of (2.6) and using the result that the Fourier
transform of the sinc-function (2.7) is

Ŝ (j, h; ζ) = hei(ζjh)
[
H(ζ + π/h)−H(ζ − π/h)

]
, (2.12)

where H is the Heaviside function, gives expressions for the velocities at each of the
collocation points in terms of the coefficients ωkl in (2.6) as

uij = −hx
π

M∑
k=−M

N∑
l=−N

I
(1)
j−l,i−kωkl , vij =

hy

π

M∑
k=−M

N∑
l=−N

I
(2)
i−k,j−lωkl , (2.13)

and where

I (1)
m,n =

∫ 1

0

∫ 1

0

ση

σ2ξ2 + η2
sin((j − l)πη) cos((i− k)πξ)dξdη, (2.14)

I (2)
m,n =

∫ 1

0

∫ 1

0

σξ

σ2ξ2 + η2
sin((i− k)πξ) cos((j − l)πη)dξdη, (2.15)

where σ = hy/hx. Due to the difficulty in evaluating these double integrals, it is more
efficient to calculate Im,n numerically using

I (1)
m,n =

∫ 1

0

σ

1 + σ2x2

[
sin2[(mπ + nπx)/2]

mπ + nπx
+

sin2[(mπ − nπx)/2]

mπ − nπx

]
dx

+

∫ 1

0

σ

σ2 + x2

[
sin2[(mπx+ nπ)/2]

mπx+ nπ
+

sin2[(mπx− nπ)/2]

mπx− nπ

]
dx, (2.16)

I (2)
m,n =

∫ 1

0

σ

σ2 + x2

[
sin2[(mπ + nπx)/2]

mπ + nπx
+

sin2[(mπ − nπx)/2]

mπ − nπx

]
dx

+

∫ 1

0

σ

1 + σ2x2

[
sin2[(mπx+ nπ)/2]

mπx+ nπ
+

sin2[(mπx− nπ)/2]

mπx− nπ

]
dx. (2.17)
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Then, by inserting (2.6) into (2.1) and using (2.8), we obtain

Fij =
1

h2
x

M∑
k=−M

δ
(2)
ki ωkj +

1

h2
y

N∑
l=−N

δ
(2)
lj ωil + 2ωij

+

[
(1 + ε)i− R

hx
uij

] M∑
k=−M

δ
(1)
ki ωkj +

[
(1− ε)j − R

hy
uij

] N∑
l=−N

δ
(1)
lj ωil ,

= 0, i = −M...M, j = −N...N, (2.18)

where Fij is the right-hand side of (2.1) evaluated at the (i, j)th collocation point.
Equations (2.18) are (2M + 1) × (2N + 1) equations for the (2M + 1) × (2N + 1)
unknowns ωkl . Two constraints are applied to this equation: first, we fix the total
circulation and second, we fix the centroid of vorticity in accordance with RS84. The

circulation is fixed at 2π by adding the term ρ(i, j)
(
hxhy

∑M
k=−M

∑N
l=−N ωkl − 2π

)
to

(2.18) where ρ(i, j) is a random number function that decouples the last term from
the other equations. Second, since the equations are invariant under a 180◦ rotation,
Fij = F−i,−j , we can fix the centroid of vorticity at the origin and also reduce the
number of unknowns to (2M + 1)N +M + 1.

2.2.2. Accuracy

With M and N fixed, this system is solved using the Newton–Raphson method
where the Jacobian is Jijkl = ∂Fij/∂ωkl . Euler continuation in λ starting from the
axisymmetric Burgers vortex is used to expedite results, but this is not necessary for
convergence, which is defined by |Jijkl(ωnew

kl − ωold
kl )|max < 10−12 and at the boundary

|ω|max < 10−5. Second-order convergence is always obtained within a few iterations.
Given that the Jacobian contains ((2M+ 1)N+M+ 1)2 elements, we were limited by
storage capacity to a maximum square domain of M,N = 50, rather than by a CPU
time constraint.

In order to determine the best possible values for the basis spacing hx and hy , the
code was tested using the axisymmetric case and it was found, by trial and error, that
both the error from the Newton–Raphson method and the maximum value of the
vorticity at the boundary are minimized by using hx = (π/M)1/2 and hy = (π/N)1/2,
leading to a domain size of (πM)1/2×(πN)1/2. Since the Burgers vortex is axisymmetric,
the best domain shape corresponds to a square, M = N, but choice of domain aspect
ratio depends quite strongly on the shape of the function to be approximated. At
low Reynolds numbers, strain tends to elongate the vortex, therefore a rectangular
domain can be used for greater accuracy. At higher Reynolds numbers, the vortex
tends to be less elliptical, thus M = N is used as before, but since the vortex aligns
itself at an angle to the strain, domain size efficiency can be maximized by allowing
strain to be rotated through an angle, φ, where the velocities are

u = αx cos2 φ+ βx sin2 φ+
β − α

2
y sin 2φ, (2.19)

v = βy cos2 φ+ αy sin2 φ+
β − α

2
x sin 2φ, (2.20)

choosing φ to align the major axis of the vortex with the diagonal of the domain.

2.3. Results

Since exact solutions (2.3)–(2.4) are known for either R = 0 or λ = 0, the R, λ
parameter space for Reynolds numbers 1 < R < 104 and 0.2 < λ < 150 is investigated.
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λ ω(r = 0)(R = 1) ωmax|boundary(R = 1) ω(r = 0)(R = 10) ωmax|boundary(R = 10)

0.2 0.9802 2.23× 10−16 0.9932 6.62× 10−13

0.4 0.9179 9.27× 10−16 0.9711 2.35× 10−11

0.6 0.8025 8.66× 10−16 0.9268 1.15× 10−10

0.8 0.6027 1.00× 10−10 0.8332 1.77× 10−10

Table 2. Vorticity values at the core and the boundary R = 1, R = 10 with M,N = 40, φ = π/4.
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Figure 1. Isovorticity contours (a–c) and projected streamlines (d–f) at R = 10, λ = 0.4, 0.6, 0.8.
Note rotation of (x, y) axes.

For each case studied, tables 2–5 show the value of the core vorticity and the largest
value of the vorticity at the domain boundary. Ideally, this latter quantity should be
at the level of machine precision. In figures 1–4, the isovorticity contours and the
streamlines projected onto the plane normal to ω are plotted on the domain on which
they are calculated. The isovorticity contour plots show the directions of the principal
axes of strain and contours varying from 0.1R to the lowest value, given separately
on each plot. The projected streamlines correspond to globally inward flow when
λ 6 1 but for λ > 1 some of the contours shown correspond to fluid particles that are
not being swept into the vortex. Our results can be classified into three categories,
denoted by low, intermediate, or high Reynolds numbers.

In the low-Reynolds-number region, R = 1–10 (table 2, figure 1) the axes of
strain are rotated by 45◦ to achieve maximum accuracy. All plots are shown on the
domain of calculation and the principal axes of strain are shown at the origin of
each isovorticity plot. The vorticity contours are stretched in the y-direction and so
steady solutions cannot be accurately calculated within our bounded domain beyond
λ > 0.8. This behaviour can be predicted by assuming that low-Reynolds-number flow
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λ M N φ ω(r = 0) ωmax|boundary
0.5 40 40 0 0.9993 1.79× 10−12

1.0 50 50 0 0.9974 6.19× 10−15

1.5 40 40 π/3 0.9939 1.08× 10−8

2.0 50 50 −π/6 0.9888 4.95× 10−6

2.5 20 80 0 0.9811 9.13× 10−5

Table 3. Vorticity values at the core and the boundary for R = 100.
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Figure 2. Isovorticity contours (a–c) and projected streamlines (d–f) at R = 100, λ = 0.5, 1.0, 1.5.

can be approximated by the zero-Reynolds-number limit (2.4) and it is likely that this
is why RS84 stated that as λ→ 1 the ‘elongation of the vortex tends to infinity’ and
only investigated solutions for λ 6 0.75. The streamlines are shown for completeness
and for comparison to higher-Reynolds-number cases. See Bajer & Moffatt (1997)
for similar streamline patterns in the context of a stretched magnetic-flux tube.

For intermediate values of the Reynolds number, R = 100 (table 3, figure 2),
it is clear that elongation of the vortex does not tend to infinity as λ → 1. In fact,
increasing the circulation tends to reduce the ellipticity of the vortex as well as rotating
the major and minor axes of the vortex at an angle that approaches 45◦ for large R
(originally noted in RS84). This enables a numerically steady solution to be found
for λ = 1, as shown in figure 2(b), which, in contrast to the vortex sheet (1.5), is a
bounded vorticity solution in plane strain. Furthermore, at this Reynolds number, we
are easily able to find numerically steady solutions for λ > 1. The solution for λ = 1.5
is shown in figure 2(c), but extra care must be taken for solutions in this region. As
shown in figure 2(f), for λ > 1, stagnation points will appear in the flow. MKO94
argued that the vorticity beyond the stagnation points will be transcendentally small
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λ ω(r = 0) ωmax|boundary
1.0 0.99997 1.96× 10−14

2.0 0.99989 2.01× 10−14

3.0 0.99976 2.44× 10−14

6.0 0.99905 1.26× 10−14

Table 4. Vorticity values at the core and the boundary R = 1000 with M,N = 50, φ = 0.
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Figure 3. Isovorticity contours (a–c) and projected streamlines (d–f) at R = 1000, λ = 1, 3, 6.

and therefore be convected away from the vortex as a passive scalar. However, their
estimate for vorticity flux due to this phenomenon is exceedingly small and this
time variation does not seem to compromise our ability to find numerically steady
solutions for λ > 1. Instead, our solutions correspond to a ‘snapshot’ of the vorticity
at a time when the majority of the vorticity is contained within our bounded domain.
To account for this, we will call our steady solutions ‘quasi-steady’ and later, in § 3,
address the time variation and the nature of the vorticity flux.

For very large Reynolds numbers, R = 103–104 (tables 4–5, figures 3 and 4),
variation away from the the Burgers solution (2.3) is very small except for large
strain ratios, well into the biaxial region. In this region, we notice that the vorticity
contours closely relate to the projected streamlines (see figure 4). Since the vorticity
is exponentially small outside the core, it is being passively convected by the velocity
field. The projected streamlines closely resemble the streamlines for a point vortex in
pure two-dimensional strain, except that since the vortex is being stretched, there is
some inward flow which causes the streamlines to slowly coil into the origin.
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λ ω(r = 0) ωmax|boundary
50.0 0.99934 2.44× 10−14

100.0 0.99734 1.89× 10−8

150.0 0.9940 1.26× 10−4

Table 5. Vorticity values at the core and the boundary R = 104 with M,N = 50, φ = 0.
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Figure 4. Isovorticity contours (a–c) and projected streamlines (d–f) at R = 104, λ = 50, 100, 150.

3. Biaxial strain at large Reynolds number
3.1. Characteristic regions of the flow

We observe from our numerical results that for R� 1 the vortex becomes increasingly
circular which makes the axisymmetric Burgers vortex a very good approximation to
the flow until the strain ratio becomes large enough such that outside the core of
the vortex, the isovorticity contours resemble figure 5. This figure shows several key
characteristic regions of the flow. Region I, the core of the vortex, within r = O (1),
is where viscous diffusion of vorticity is balanced by the intensification of vorticity
by vortex stretching, and the streamlines and isovorticity contours are nearly circular.
Region II, which we will call the cat’s-eye, due to its shape, is defined as the interior
region between the stagnation points of the flow, 1 < r < ε−1/2, when the strain ratio
is large, λ� 1, the Reynolds number is large, R� 1, but their ratio is small,

ε ≡ λ

R
� 1. (3.1)

It was noted earlier that for λ > 3, the vortex, when rotated in (x, y, z) space away
from the z-axis, is subject to a tilt instability on a time scale of O((β − γ)−1). This
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III
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IV

Figure 5. Schematic of the two-dimensional asymptotic limit of projected streamlines that divide
the characteristic regions of the nearly two-dimensional flow for λ� 1, R� 1 and ε� 1.

time scale is of the same order as that associated with strain-vortex-induced motions
in the (x, y)-plane at a radius r ∼ O(ε−1/2), the boundary of region II. The present
asymptotic results, which assume precise alignment of the vortex axis with the z-
axis, are nonetheless of interest because first a vorticity distribution of unusual and
unexpected form arises in region II, secondly we find a time scale for decay of the
vortex when λ > 1 significantly different to MKO94, and third, our results are relevant
to certain unsteady but strictly two-dimensional flows which can obtained from the
stretched vortex flow using the Lundgren transformation (Lundgren 1982).

In region II, the vorticity is exponentially small and is basically convected along
streamlines. The flow in the (x, y)-plane is almost two-dimensional. The cat’s-eye
shape will accurately describe the contours of the vorticity and almost describe the
streamlines, as shown, for example, in figures 3(c, f) and 4. The velocity in this region
is dominated by the core vorticity and the external strain. Region III begins at each
stagnation point and extends away from the vortex. Vorticity in this region is also
exponentially small, but it is convected away by the strain, which begins to dominate
the induced velocities from the core. Region IV is the far field where structure of the
vortex becomes unimportant.

We develop an asymptotic form for the vorticity in Region II and use this to
determine the rate of decrease in circulation out of the cat’s-eye. Then, we consider
the nature of the vorticity leakage through Region III and match the rate of circulation
increase in Region IV to the flux of vorticity from the cat’s-eye.

3.2. Region II, the cat’s-eye

3.2.1. Vorticity distribution

We can write the non-dimensional vorticity equation (2.1) in its steady form in
two parts by considering the strain to consist of the sum of an axially symmetric
three-dimensional part and a two-dimensional pure strain part,

L0 (ω) + L1 (ω) = 0, (3.2)
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where

L0 (ω) =
∂2ω

∂x2
+
∂2ω

∂y2
+ x

∂ω

∂x
+ y

∂ω

∂y
+ 2ω, (3.3)

L1 (ω) = (λx− Ru) ∂ω
∂x

+ (−λy − Rv) ∂ω
∂y
. (3.4)

The terms of L0 represent the balance of viscous diffusion of vorticity and intensifi-
cation of vorticity by vortex stretching in an axisymmetric strain while the terms of
L1 correspond to the effective two-dimensional transport of vorticity by the induced
velocity and by the two-dimensional, or in-plane, strain. Focusing first on L1, we
hypothesize that the velocity field given by the bracketed terms in (3.4) in the region
outside the core of the vortex, r > 1, can be represented to leading order by the po-
tential flow of a point vortex in the pure two-dimensional strain. The streamfunction
and velocity for this potential flow can be written as

ψ0 (x, y) = − ln(x2 + y2)1/2 − εxy. (3.5)

The stagnation points of this flow occur where the velocities induced by the point
vortex and the strain balance,

xs = ±(1/2ε)1/2, (3.6)

ys = ∓(1/2ε)1/2, (3.7)

or, in polar coordinates,

rs = ε−1/2, θ =
3π

4
,−π

4
. (3.8)

The true projected streamlines for the numerical solutions of § 2 show a nearly
cat’s-eye form where λ and R are given by (3.1), as can be seen in figure 4.

We remark that for the full three-dimensional straining field, the (x, y)-plane vel-
ocities will balance at

xs = ±
(
λ− 1

λ+ 1

)1/4

(1/2ε)1/2, (3.9)

ys = ∓
(
λ+ 1

λ− 1

)1/4

(1/2ε)1/2, (3.10)

or, in polar coordinates,

rs =

(
λ2

λ2 − 1

)1/4

ε−1/2, (3.11)

θ =
3π

4
− 1

2λ
+ O(λ−3), −π

4
− 1

2λ
+ O(λ−3), (3.12)

so that comparison with (3.8) will require that λ be large.
Next we put

Ψ = ψ0 + ψ1, (3.13)

ψ1 = ln(x2 + y2)1/2 + ψ, (3.14)

where ψ1 is a perturbation streamfunction associated with the exponentially small vor-
ticity ω = ωII outside the core and ψ is the dimensionless form of the streamfunction
in (2.2). From (2.2) ψ1 satisfies

∇2ψ1 = −ω. (3.15)
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The streamfunction Ψ gives the whole of the two-dimensional flow corresponding to
the velocity components of (3.4) so that

−λx+ Ru = R
∂Ψ

∂y
, λy + Rv = −R ∂Ψ

∂x
. (3.16)

When (3.13) and (3.16) are used in (3.4), the vorticity equation in Region II may be
written as

L0 (ω) + L2 (ω) + L3 (ω) = 0, (3.17)

L2 (ω) = −R
(
∂ψ0

∂y

∂ω

∂x
− ∂ψ0

∂x

∂ω

∂y

)
, (3.18)

L3 (ω) = −R
(
∂ψ1

∂y

∂ω

∂x
− ∂ψ1

∂x

∂ω

∂y

)
. (3.19)

For large R, when 1 < r < ε−1/2, we argue that both ω and ψ1 will be exponentially
small, with the consequence that the dominant terms of the equation will be L2 (ω).
Solving L2 (ω) = 0 will require that

ω = ωII (ψ0) = ω
(
− ln(x2 + y2)1/2 − εxy

)
. (3.20)

We must now determine the function of ψ0 in (3.20) that satisfies (3.3) and (3.18) to
leading order. We develop a heuristic argument for an expansion of appropriate form.
First we assume that, owing to what will be shown to be exponentially small vorticity
in Region II, the terms of L0 and L2 will be dominant over L3 in this region. The
self-consistency of this assumption is demonstrated in Appendix A. Next we seek a
form for ωII which will approach the Burgers limit ωBV = exp(−r2/2) when ε → 0.
In this limit, with r� 1 and ψBV ≡ limε→0(ψ0), eliminating r from (3.5) and ωBV gives

ωBV = exp
[
− 1

2
exp(−2ψBV )

]
. (3.21)

When ε → 0 we require that ωII (ψ0) in (3.20) agree with (3.21). This requirement
immediately suggests that in region II, when 0 < ε� 1, (3.20) takes the form

ωII (ψ0) = exp
[
− 1

2
exp(−2ψ0)

]
= e−r

2 exp(ε r2 sin 2θ)/2 + · · · , (3.22)

where a conversion to polar coordinates has been used. Equation (3.22) in turn
motivates an expansion of the form

ωII (r, θ) = e−r
2 exp(ε r2 sin 2θ)/2

(
g1(r) + ε g2(r) sin 2θ . . .

)
, (3.23)

and we note that (3.23) has the form suggestive of an expansion beyond all orders
(see Berry 1991). This is made clearer if we introduce a transformation of the form
r̃ = ε1/2 r, but since this offers no advantage at leading order within the bracketed
factor in (3.23), we do not follow this path. It is clear from the method of construction
that (3.23) satisfies (3.18) to O(ε0) within the bracketed factor, provided g1 = 1.

We must now demonstrate that (3.3) is also satisfied to leading order, with g1(r) = 1.
In polar coordinates, this equation becomes

∂2ω

∂r2
+

1

r

∂ω

∂r
+

1

r2

∂2ω

∂θ2
+ r

∂ω

∂r
+ 2ω = 0. (3.24)

When (3.23) is substituted into (3.24), the e−r
2 exp(ε r2 sin 2θ)/2 factor cancels uniformly,
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and expanding the resulting equation in powers of ε, we find to O(ε0),(
1

r
− r
)
∂g1

∂r
+
∂2g1

∂r2
= 0. (3.25)

The general solution of (3.25) may be written as a constant plus a second constant
times an exponential integral. This second term may be shown to be unbounded when
r → 0 and r →∞. Hence the only finite solution is g1 = const = 1 as required. Thus,
to leading order (3.3) and (3.18) are satisfied by (3.22). We remark that (3.24) can be
satisfied to O(ε0) in the above sense by a more general form of (3.23) with g1(r) = 1
and the exponential prefactor replaced by the form e−r

2 exp(ε Q(r,θ))/2 for a wide class
of functions Q(r, θ). Compatibility with (3.20) is however a severe restriction, and a
unique solution appears to be Q(r, θ) = r2 sin 2θ.

The difficult task of determining the next term at O(ε) in the bracketed factor in
(3.23) is not attempted here. We suspect that the dominant balance arguments used
at the leading order do not apply at higher order and that the relevant terms of
L0, L1 and L3 must be combined. Our leading-order solution is formally valid only
in 1 < r < ε−1/2. However comparison with the present numerical solutions, to be
discussed subsequently, show that (3.22) is an extremely good approximation right up
to the cat’s eye boundary r = O(ε−1/2), thus providing strong evidence that neglected
higher-order terms do not lead to disordering in Region II.

Expansion of (3.22) in orders of ε gives

ωII(r, θ) = e−r
2/2

[
1− (ε sin 2θ)

r4

2
+ O

(
ε2
)]
, (3.26)

which matches, when r → 0, to the MKO94 asymptotic solution for R� 1 (in terms
of their scaling definitions)

ω = ω0 + εΩ(r̂) sin 2θ + O
(
ε2
)
, (3.27)

Ω(r̂) ∼ 1
16
r̂4e−r

2/4 (3.28)

as r → ∞. In order to remedy the disordering of terms of the MKO94 solution at

r =
(
2/ε
)1/4

, Jiménez et al. (1996) performed an asymptotic analysis involving the
Lundgren transformation and coordinate stretching that delayed the disordering to
r = ε−1/2 (again in terms of their definitions, which involve time dependence due to
the Lundgren transformation),

ω(r̂, θ) =
1

4πt
e−(r̂−εr̂3π sin 2θ)2/4t + O(ε2). (3.29)

Again, (3.22) matches their form to O(ε2). Figure 6(a, b) shows that the agreement
between (3.22) and numerics for R = 1000, λ = 50, 100 is good. The vorticity at
the stagnation point (and at any point along the cat’s-eye boundary) given by (3.22)
is ωs = exp(−1/2eε). This value is compared to numerics in table 6 for cases in
which the stagnation point appears within the domain of validity of the quasi-steady
calculation. The stagnation point is used because it appears at the limit of the region
of the validity of (3.22), yet the agreement is still very good.

A comparison of (3.22) with the asymptotic formulations from MKO94 (3.27),
Jiménez et al. (1996) (3.29), and the present numerical solutions along cuts θ = π/4
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R λ ωII ωnumerics

103 6.0 1.0210−14 4.8510−14

104 100 9.8910−9 1.0310−8

104 150 1.2910−6 4.7210−6

Table 6. Stagnation point vorticity
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Figure 6. Comparison of isovorticity contours of numerical results (shaded regions) to
equation (3.22) (solid lines) for R = 104, and (a) λ = 50, (b) λ = 100.

and θ = −π/4 are shown in figure 7(a) and 7(b) respectively. Along θ = π/4, all
theories give good agreement to the numerics except MKO94 which changes sign at
r ≈ 3.76. Along θ = −π/4, figure 7(b) clearly shows that (3.22) is the only form that
is accurate to the edge of the cat’s eye.

In summary, in Region II the essential properties of the flow are that the core of the
vortex can be closely approximated by a point vortex and that the exponentially small
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Figure 7. Vorticity along (a) θ = π/4 and (b) θ = −π/4 from MKO94 (3.27) (dotted), Jiménez et
al. (1996) (3.29) (dash-dot), our result (3.22) (dashed), and numerics (solid) for λ = 100, R = 10, 000,
ε = 0.01. In (a) the MKO94 result becomes negative at r = 3.76.

vorticity is being convected by the background strain, which is composed of stretching
and (x, y)-plane components. Our main result is (3.22). This ωII satisfies both (3.3)
and (3.18) to leading order, and matches the inner expansions of both MKO94 and
Jiménez et al. in region I. Moreover (3.22) agrees well with our numerical results
uniformly in Region II, providing strong evidence that neglected higher-order terms
do not lead to disordering on the cat’s eye boundary.

3.2.2. A generalization

Our approach is not limited to the case of biaxial strain. For example, given
the Burgers vortex embedded in a strain field in which ψ0 of (3.5) is replaced by
ψ

(n)
0 (r, θ) = − ln(r) − εnrn sin nθ, n > 1, where εn is a measure of the relative strength

of the strain field, the asymptotic form of the vorticity outside of the vortex core but
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(b)(a)

Figure 8. Asymptotic limit of the Burgers vortex in a straining field where

(a) ψ(3)
0 (r, θ) = − ln(r)− ε3r3 sin 3θ and (b) ψ(4)

0 (r, θ) = − ln(r)− ε4r4 sin 4θ.

within some dividing streamline will be,

ωII = exp
[
− 1

2
r2 exp (−2εnr

n sin nθ)
]
, (3.30)

Ψ = − ln(r)− εnrn sin nθ + ψ1 + O(ε2n), (3.31)

∇2ψ1 = −ωII . (3.32)

The cat’s-eye shape corresponds to n = 2, and two other examples for n = 3 and
n = 4 are shown in figures 8(a) and 8(b) where the asymptotic form of the vortex
exhibits triangular and square dividing streamlines, respectively. Clearly, for ψn, the

dividing streamline corresponds to an n-sided polygon at a radius of ε
−1/n
n from the

origin. It should be noted that for each case the asymptotic form of the vortex core
(Region I) could be calculated in a manner analogous to MKO94.

3.3. Slow decay of vortex for λ� 1

Although the solutions we find are nearly steady, in fact numerically steady, there is
extremely slow time variation in the form of flux of vorticity to infinity. This slow time
variation was originally noted in MKO94 where they hypothesized that, in biaxial
strain, diffusion would not be able to balance the strain. We perform a circulation
decay rate estimate by considering flux of vorticity across the cat’s-eye boundary and
then analyse the structure of vorticity leaking into Region IV.

3.3.1. Flux of vorticity out of the cat’s-eye

By integrating the dimensionless vorticity equation (2.1) over an area, A, and using
Green’s theorem to relate area integrals to contour integrals, the time derivative of
the circulation is easily found to be the sum of diffusion of vorticity and transport of
vorticity across the boundary of the domain,

∂Γ

∂t
≡ ∂

∂t

∫ ∫
A

ωdA =

∮
∂A

(∇ω · n) dl −
∮
∂A

(u · n)ωdl, (3.33)

where n is an outward-facing unit vector normal to the boundary and u is the
velocity at the boundary. It will be useful to write the velocity decomposed into a
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two-dimensional part induced by vorticity and pure two-dimensional strain, and a
part associated with stretching,

u = u1 + u2 =

(
+∂ψ/∂y
−∂ψ/∂x

)
+

(
−x
−y

)
. (3.34)

If we choose the boundary A to be the edge of the cat’s-eye, i.e. the contour defined
by

ln
(
ε r2
)

+ ε r2 sin 2θ = −1, (3.35)

the dominant velocities will only come from ψ ∼ ψ0 (x, y) = − ln(x2 + y2)1/2 − εxy, so
that

u = u1 + u2 =

(
+∂ψ0/∂y
−∂ψ0/∂x

)
+

(
−x
−y

)
. (3.36)

Along the cat’s-eye, the unit normal vector is defined to be

n =
∇ψ0

(∇ψ0 · ∇ψ0)
1/2

= − ∇ωII
(∇ωII · ∇ωII )1/2

(3.37)

while

u · n =

(
∂ψ0

∂y

∂ψ0

∂x
− ∂ψ0

∂x

∂ψ0

∂y

)
+ u2 · n

= u2 · n. (3.38)

Also, along this contour the cat’s-eye vorticity from (3.22) is a constant, ωc =
exp

(
−1/2eε

)
, so that we have

∂Γ

∂t
= ωc

∮
∂A

(
∇ωII
ωc
− u2

)
· ndl. (3.39)

Upon putting ρ = ε1/2r, and solving (3.35) for θ (ρ) , we find that the circulation
decrease in terms of dimensional variables is

∂Γ

∂t
= − c

4π
γε−1Γ exp

(
−1

2eε

)
, (3.40)

where c is a pure number defined by the integral along the cat’s eye, in terms of ρ,

c = 4

∫ 1

m

(
∇ωII (ρ)

ωc
− u2(ρ)

)
· n (ρ)

[
1 + ρ2

(
dθ

dρ

)2
]1/2

dρ, (3.41)

and the integration limit, m = 0.527697, is found by solving (3.35) for θ = π/4.
Numerical integration of (3.41) gives c = 0.48475. This estimate of the circulation
reduction is of the order of exp[(1/2eε)(e−1)] greater than that of MKO94. However,
the circulation decay rate is still exponentially small and did not preclude us from
finding the numerically steady solutions of § 2.

This method of circulation decay rate calculation can be carried out for the
generalized asymptotic solution (3.30). In general, the flux will be proportional to the
vorticity on the dividing streamline and the length of the dividing streamline.

3.3.2. Structure of vorticity leakage into Region IV

To test the validity of our quasi-steady numerical results in the biaxial region, we
used a time evolution code to examine how the vortices behave over time. It was
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found that the structure of the core of vortex persists over very long periods of time
and that the effect of the biaxial strain is to strip away vorticity along a thin band
on either side of the core, starting at the position of the stagnation point. This ‘tail’
of leaking vorticity was only present for strain ratios in the biaxial region and for at
least moderate Reynolds numbers of order 102 (see figure 2c). For lower circulation,
biaxial strain will pull apart the vortex, but when the core of the vortex is close to
circular, the tails appear.

We now establish a model for the structure of the tails. Working in a rectangular
coordinate system (x̂, ŷ) with origin at the stagnation point,

x̂ = x− xs, (3.42)

ŷ = y − ys, (3.43)

we assume that, in this region, the induced velocities of the vortex are negligible
compared to the local strain. Hence, the vorticity equation becomes

∂ω

∂t
− (1 + λ) x̂

∂ω

∂x̂
− (1− λ) ŷ∂ω

∂ŷ
= 2ω +

∂2ω

∂x̂2
+
∂2ω

∂ŷ2
. (3.44)

The solution of (3.44) subject to the boundary and initial conditions

ω(x̂, 0, t) given −∞ < x̂ < ∞, (3.45)

ω(x̂, ŷ, 0) given −∞ < x̂ < ∞, 0 < ŷ < ∞, (3.46)

is developed in Appendix B. We now assume that there is initially no vorticity in
Region IV and so we set ω(x̂, ŷ, 0), equal to zero in (3.46). At very large distances
from the vortex, its detailed structure will not be resolvable. Hence in Region IV,
we represent the leaking vorticity on the x̂-axis in the form of a delta function with
magnitude A, so that (3.45) is ω(x̂, 0, t) = Aδ (x̂), where A is to be determined. Using
these initial and boundary conditions in the solution of Appendix B then gives, for
the vorticity in Region IV

ω(x̂, ŷ, t) = Aŷ

(
1

π

)1/2 ∫ 1

0

t exp
[
− (1− λ) tτ− 1

2
x̂2/P (τ)− 1

2
ŷ2/Q(τ)

]
(−P (τ)Q(τ)3)1/2

dτ, (3.47)

where

P (τ) =
1− e−2(1+λ)tτ

1 + λ
, (3.48)

Q(τ) =
1− e−2(1−λ)tτ

1− λ . (3.49)

Taking the limit t→∞ of (3.47) gives the far-field vorticity

ω(x̂, ŷ, t) =

(
1

π

)1/2(
λ+ 1

λ− 1

)1/2
A

ŷ
e−(1+λ)x̂2/2 + O

(
1

t

)
, (3.50)

which is an approximation to the tail of leaking vorticity. This tail has a Gaussian
cross-section with width [2/ (1 + λ)]1/2, which is equivalent to the width of a vortex
sheet (2.5) embedded in the same strain field. Comparing this model to numerical
results from a time advancing code, not shown here, indicated that this estimate of
the width of the tail is very good. Table 7 and figure 9 show that, at R = 100, λ = 1.5,
the tail has width corresponding to 2/ (1 + λ) = 0.8.

To find the rate of circulation increase, the vorticity distribution (3.47) may be
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Figure 9. Cross-sections of ‘tail’ at various y at R = 100, λ = 1.5.

x y σ2

3.70 8.6 0.77
3.67 9.0 0.75
3.63 9.5 0.77
3.57 10.0 0.79
3.50 10.5 0.79
3.43 11.0 0.79

Table 7. Results of curve-fitting a Gaussian, ω0 e−(x−xs)2/σ2
, to the tail cross-sections of the

quasi-steady numerical solutions at R = 100, λ = 1.5. Our analysis predicts σ2 = 0.8.

integrated directly to give

∂Γ

∂t
=

∂

∂t

∫ ∞
−∞

∫ ∞
0

ω(x̂, ŷ, t)dx̂dŷ =

(
2 (λ− 1)

π

)1/2
A

(1− e2(1−λ)t)1/2
, (3.51)

which, as t→∞, limits to

∂Γ

∂t
=

(
2 (λ− 1)

π

)1/2

A. (3.52)

Matching this circulation increase to (3.40) requires that the magnitude of the delta
function, A, be proportional to the cat’s-eye boundary vorticity, ∼ exp(1/2eε) and the
length of the cat’s-eye, ∼ ε−1/2, for large strain ratio, λ = O

(
ε−1
)
.

These results indicate that the vorticity convected out of the cat’s-eye develops into
a tail of vorticity emanating from the stagnation points achieving a characteristic
width equal to that of the Burgers vortex layer. Matching the vorticity leakage from
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one region to the other gives us confidence that our various approximations are
physically reasonable.

4. Two-dimensional stability of non-symmetric Burgers vortices
We now consider the linear stability of the steady and quasi-steady solutions

discussed in § 2. We begin by demonstrating a property of general solutions of the
vorticity equation for vorticity distributions in the presence of a linear background
velocity field.

4.1. General vorticity in a linear velocity field

We return briefly to dimensional coordinates and consider a velocity field of the form

ui = ūi(xi, t) + Jij(t) xj, (4.1)

where (4.1) represents a general velocity field ū embedded in a linear background
field. We take Cartesian coordinates xi ≡ (x1, x2, x3) aligned with the non-rotating
principal rates of strain with α(t)+β(t)+γ(t) = 0 and denote the background vorticity
by ξi. The time-dependent rate-of-strain tensor of the background field is then

J(t) = S(t) + A(t) =

 α(t) 0 0
0 β(t) 0
0 0 γ(t)

+

 0 1
2
ξ3(t) − 1

2
ξ2(t)

− 1
2
ξ3(t) 0 1

2
ξ1(t)

1
2
ξ2(t) − 1

2
ξ1(t) 0

 . (4.2)

The vorticity equation, then, in indicial notation is given by

∂ωi
∂t

+ Jjkxk
∂ωi
∂xj

+ ūj
∂ωi
∂xj

= ωj
∂ūi
∂xj

+ Jijωj + ν∇2ωi, (4.3)

where ωi = ωi + ξi = εijk(∂uj/∂xk) + ξi. Making the change of variables to a system
centred on a particle initially located at x0i moving with the background flow

xi = Xi − xpi(t, x0i), (4.4)

where
dxpi
dt

= Jijxpi with xpi(0) = x0i , (4.5)

gives

∂ωi
∂t

+ Jjk(Xk − xpk )
∂ωi
∂Xj

+ ūj
∂ωi
∂Xj

= ωj
∂ūi
∂Xj

+ Jijωj + ν∇2ωi. (4.6)

Defining transformed vorticity and velocity fields denoted by capitalized variables,

Ωi(Xi, t) = ωi(Xi − xpi , t), Ui(Xi, t) = ui(Xi − xpi , t), (4.7)

gives Ω which solves the vorticity equation

∂Ωi
∂t

+ JjkXk

∂Ωi
∂Xj

+Uj

∂Ωi
∂Xj

= Ωj
∂Ui

∂Xj

+ JijΩj + ν∇2Ωi, (4.8)

which is identical in form to (4.3). Note that the boundary conditions on this trans-
formed equation may indeed be time dependent if the solution to (4.3) corresponds
to velocities that do not decay to zero at infinity.

From the above we can conclude that for a given solution to (4.3), there exists
an infinite family of additional solutions (indexed by x0i), each with the same form
and evolution, corresponding to a displacement of the initial vorticity by x0i and



Non-symmetric Burgers vortices 221

subsequent convection with the background flow. Alternatively we may say that
solutions to (4.3) are invariant to an arbitrary initial displacement of the embedded
vorticity field. We shall refer to this as the neutrally convective property of vorticity
embedded in a linear field, and note that these results are also valid for the Euler
and advection–diffusion equations. Furthermore, for the case of compact vorticity, we
should note that the background vorticity ξi must satisfy

∂ξi
∂t

= Jijξj = Sijξj , (4.9)

yielding an alternative form for (4.3),

∂ωi

∂t
+ Jjkxk

∂ωi

∂xj
+ ūj

∂ωi

∂xj
= ωj

∂ūi
∂xj

+ Jijωj + Sijξj + ν∇2ωi. (4.10)

4.2. A convectively neutral mode

We now apply this result to our solutions of (4.3) corresponding to steady vorticity in
the z-direction, where the background flow is a steady constant (in time) linear strain
with no shear, ξ ≡ 0. Equations (4.4) and (4.7) become

x = X − x0e
αt, y = Y − y0e

βt, (4.11)

Ω(X,Y , t) = ω(X − x0e
αt, Y − y0e

βt),
U(X,Y , t) = u(X − x0e

αt, Y − y0e
βt),

V (X,Y , t) = v(X − x0e
αt, Y − y0e

βt),

 (4.12)

and we see that Ω(X,Y , t) is a convecting solution of (1.1) in the form

∂Ω

∂t
+ (αX +U)

∂Ω

∂X
+ (βY + V )

∂Ω

∂Y
= γΩ + ν∇2Ω. (4.13)

To relate this result to linear stability analysis, we write a general perturbed vorticity
field in the form

ω(x, y, t) = ωss(x, y) + ω1(x, y)e−µt, (4.14)

where ωss is the steady base state and ω1, |ω1|� |ωss|, and µ are the eigenfunction and
eigenvalue, respectively. Positive µ denotes linear stability and µ = 0 is the neutral
stability boundary. Next we apply the neutrally convective property to ωss(x, y) and
Taylor expand to obtain

ωss(x− x0e
αt, y − y0e

βt) ' ωss(x, y)− ∂ω

∂x
x0e

αt − ∂ω

∂y
y0e

βt. (4.15)

Comparing the right-hand sides of (4.14)–(4.15) gives two linear eigensolutions
−(∂ω/∂X)eαt and −(∂ω/∂Y )eβt with corresponding eigenvalues −α and −β.

This result can be applied to various well-known solutions of the Navier–Stokes
equations. For the Burgers vortex, the axisymmetric strain rates are α = β = −γ/2,
so that, for any Reynolds number, this convective mode gives an eigenvalue equal
to γ/2. Given the non-dimensionalization in Prochazka & Pullin (1995), this explains
the appearance of stable eigenvalue µ = 1 for all Reynolds numbers. Secondly, for
the Burgers vortex sheet solution (1.5) in plane strain, α = −γ, β = 0, we see that
a perturbation in the y-direction is neutrally stable, µ = 0, but a displacement in x
results in a relaxation back to the base state. For the current study of non-symmetric
Burgers vortices, upon non-dimensionalization and in terms of the strain ratio, the
strain rates of the non-symmetric strain field result in eigenvalues of µ1 = 1 + λ and
µ2 = 1− λ. Thus for λ > 1, there exists at least one positive eigenvalue and therefore
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a linearly unstable mode. This does not correspond to a structural instability of the
quasi-steady non-symmetric vortex but is merely the early-time linear phase of the
nonlinear neutrally convective mode discussed previously.

4.3. Subspace iteration

In order to determine the stability boundary of the non-symmetric Burgers vortex
in the (R, λ)-plane, we use a time advancing code in conjunction with a subspace
iteration method to capture the fastest growing modes of the perturbation (Saad
1992). We restrict attention to two-dimensional perturbations, that is, those with
velocity components normal to the vorticity. We now return to non-dimensional
coordinates and write (2.1) in terms of non-dimensional cylindrical polar coordinate
system (r, θ, z),

∂ω

∂t
=

1

r

[
∂

∂r

(
r
∂ω

∂r

)
+

1

r

∂2ω

∂θ2

]
+ [r(λ cos 2θ + 1)− Rur]

∂ω

∂r

+

[
−λ sin 2θ − Ruθ

r

]
∂ω

∂θ
+ 2ω, (4.16)

∇2ψ = −ω, ur =
1

r

∂ψ

∂θ
, uθ = −∂ψ

∂r
, (4.17)

where the velocity induced by the vorticity is now u = (ur, uθ, 0). We linearize the
equations with

ω = ω + ω′, ur = ur0 + u′r, uθ = uθ0
+ u′θ, (4.18)

where primed quantities are small perturbations, and we solve the resulting linear
set using finite-difference methods in r and spectral methods in θ (Buntine & Pullin
1989). Taking the discrete Fourier transforms,

ω′(r, θ, t) = e−µt
N/2−1∑
n=−N/2

ω̂n(r)e
inθ, (4.19)

ψ′(r, θ, t) = e−µt
N/2−1∑
n=−N/2

ψ̂n(r)e
inθ, (4.20)

the Poisson equation becomes

d2ψ̂n

dr2
+

1

r

dψ̂n
dr
− n2

r2
ψ̂n = −ω̂n (4.21)

and the linearized vorticity equation becomes

∂ω̂n
∂t

=
−λ
r

[
∂

∂r

(
r2ω̂n+2

)
+
∂

∂r

(
r2ω̂n−2

)]
− λ [(n+ 2) ω̂n+2 − (n− 2) ω̂n−2]

+
1

r

∂

∂r

(
r2ω̂n

)
+

[
∂2ω̂n

∂r2
+

1

r

∂ω̂n
∂r
− n2

r2
ω̂n

]
−F

[
ur0
∂ω′

∂r
+

1

r
uθ0

∂ω

∂θ
+u′r

∂ω0

∂r
+

1

r
u′θ
∂ω0

∂θ

]
, (4.22)
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for N = −N/2, . . . , N/2 − 1 where F denotes the Fourier transform. The boundary
conditions on (4.21)–(4.22) are

r = 0 : ψ̂n = 0, ω̂n = 0, n 6= 0,
dω̂0

dr
= 0, (4.23)

r →∞ : ψ̂n(r)→ 0, ω̂n(r)→ 0. (4.24)

Equation (4.22) is solved by a fourth-order five-point spatial finite-difference scheme.
The system is advanced in time first with a second-order explicit predictor followed by
updating the vorticity in a Crank–Nicolson semi-implicit two-point corrector scheme.
This updated vorticity ω̂(t+δt) is then used in the Poisson solver. Several iterations of
this procedure are needed per time step for convergence. Further details of the scheme
are given in Buntine & Pullin (1989). All calculations reported here use N = 256
in (4.19)–(4.20). Initial conditions are obtained from the steady and quasi-steady
solutions of § 2 by projection of the values of ω and ψ onto the r, θ grid.

Initially, a simple power method approach is used in which, if we represent the
time advancement as the function A, a random initial guess, ω̂, is iterated on A, i.e.

ω̂k+1 =
1

|ω̂k+1|
Aω̂k, (4.25)

where k denotes the iteration number and |ω̂k+1| is the L2 norm of the vector Aω̂k .
The eigenvalue is then calculated using the Rayleigh quotient,

µk =
〈Aωk, ωk〉
〈ωk, ωk〉

. (4.26)

Iteration is continued until |µk − µk−1| < 10−3. Maximum eigenvalues are found
using this method for R = 1, 10, 100, and 1000 and are shown in tables 8 and 9.
From these results it is seen that the eigenvalue corresponding to the fastest growing
eigenfunction corresponds closely to µ = 1 − λ. The corresponding numerically
obtained eigenfunctions are also found to be closely proportional to ∂ωss/∂y. We may
thus conclude that the mode with maximum growth rate corresponds to a neutrally
convective translation of the non-symmetric vortex without change of shape and that
this convection is toward the origin for λ < 1. Therefore, all eigenvalues are positive
for λ < 1 and the non-symmetric Burgers vortex is linearly stable in this region, at
least for the values of R investigated.

In the region λ > 1, these eigenvalues are positive, allowing the possibility that
other eigenfunctions exist with 0 < µ < 1− λ that are not convectively neutral. These
eigenfunctions are examined by employing a multi-step subspace iteration technique
(Saad 1992) in which we iterate on the three-vector system Wk = (ω̂1, ω̂2, ω̂3), where
ω̂1 and ω̂2 are equal to the analytical form of the convectively neutral eigenfunctions
and ω̂3 is a random vector. We calculate

Vk+1 = ApWk (4.27)

and compute the QR factorization Vk+1 = QR to find Wk+1 = Q. Since the cost of
this orthonormalization can be high, it is only performed after p iterations on A.
Computing the Rayleigh quotients yield the two analytically predicted eigenvalues
1± λ and a third eigenvalue which corresponds to the fastest growing eigenfunction
not found previously. This eigenfunction consistently corresponds to an eigenvalue
approximately equal to zero within our numerical accuracy for all Reynolds numbers
studied. We hypothesize that this eigenmode represents the exceedingly slow evolution
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λ µmax, R = 1 µmax, R = 10

0.2 0.8168 0.8014
0.4 0.6093 0.6050
0.6 0.4040 0.4033
0.8 0.2058 0.2046

Table 8. Maximum eigenvalue for R = 1, 10.

λ µmax, R = 100 µmax, R = 1000

0.5 0.5056 –
1.0 0.0203 0.0126
1.5 −0.5031 –
2.0 – −0.9956
3.0 – −1.9965

Table 9. Maximum eigenvalue for R = 100, 1000.

of the quasi-steady numerical solutions for non-symmetric Burgers vortices with
λ > 1. We subsequently argue that this comprises leakage of vorticity occurring near
stagnation points of the steady flow. A model for this leakage was discussed in § 3.

4.4. Results

The linear stability analysis has analytically shown that at least one positive eigenvalue
exists for λ > 1. Our result shows that in a biaxial strain field, a general small
perturbation to the vortex will result in the vortex moving with the strain field.

For the range of Reynolds numbers investigated, R = 1, 10, 100, 1000, we find that
the two smallest (most negative) eigenvalues in fact do correspond to the translating
analytical solutions found in the previous section for λ < 1. For λ > 1, the smallest
eigenvalue, 1 − λ, corresponds to the convectively neutral mode and the second
smallest eigenvalue, ≈ 0, corresponds to the slow leakage of vorticity into tails.

5. Summary
The steady and quasi-steady structure of non-symmetric Burgers vortices was

calculated numerically for a wide range of strain ratios (0.2 < λ < 150) and Reynolds
numbers (1 < R < 104), which includes strain ratios well into the biaxial region,
λ > 1. An asymptotic formulation for the analytic form of the vorticity for large R
and λ but ε � 1, in the region outside of the core of the vorticity but within the
cat’s-eye boundary, was found to be

ωII (r, θ) = e−r
2 exp(εr2 sin 2θ)/2, (5.1)

The non-symmetric Burgers vortex was found to be linearly stable for λ < 1. When
λ > 1, an apparent normal-mode instability corresponds to a neutrally convective
mode where the vortex moves with the background strain without change of structure.
An analytic explanation for this mode has been presented.

When λ > 1, our estimate for the flux of vorticity out of the cat’s-eye and decay of
circulation was found to be exponentially small, given in dimensional variables,

∂Γ

∂t
=

0.48475

4π
γε−1Γ exp

(
−1

2eε

)
. (5.2)
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The structure of this leaking vorticity was found to be in the form of ‘tails’ emanating
from the stagnation points of the flow whose long-time behaviour closely resembled
a time-dependent Burgers vortex layer.

In conclusion, the generalized Burgers vortex is effectively stable to two-dimensional
perturbations. Its stability to perturbations containing generalized velocity distur-
bances in the axial direction remains an open problem.

Appendix A. Streamfunction correction
Here we show that the terms of (3.19) are the products of quantities that are

themselves exponentially small in Region II, so that the terms of L4 are indeed small
compared to those of L1 and L3. It is sufficient to calculate ψ1, the streamfunction
associated with ωII . From (3.13)–(3.15) and (3.22)

∇2ψ1 = −ωII = −e−r
2 exp(εr2 sin 2θ)/2, (A 1)

which was solved by first writing

ψ1 = e−r
2 exp(εr2 sin 2θ)/2 [f1 (r) + εf2 (r) sin 2θ + · · ·] . (A 2)

The resulting equation for f1 is

f′′1 +

(
1

r
− 2r

)
f′1 +

(
r2 − 1

)
f1 = 1, (A 3)

which is solved using variation of parameters of the homogeneous solutions,
exp(−r2/2), ln r exp(−r2/2), and we find,

f1(r) = −1

2
E1

(
r2

2

)
er

2/2, (A 4)

where E1 is the exponential integral, as defined by Abromowitz & Stegun (1972),

E1 (z) =

∫ ∞
z

e−t

t
dt. (A 5)

Then, (A 4) forces the equation for f2,

f′′2 +

(
1

r
− 2r

)
f′2 +

(
r2 − 4

r2
− 2

)
f2 = 4r2 + 3r2E1

(
−r2

2

)
er

2/2, (A 6)

which is also solved by various parameters of the homogeneous solutions, r±2 exp(r2/2).
Then, using the boundary condition that f2 → 0 as r → 0, we find

f2(r, θ) =
r4

4
E1

(
r2

2

)
er

2/2 sin 2θ +
6 sin 2θ

r2

(
1 +

r2

2
+
r4

12
− e−r

2/2

)
. (A 7)

Substituting (A 4) and (A 7) into (A 1), using properties of the exponential integral,
and matching to the Burgers vortex as r → 0 yields

ψ1 =
1

2
E1

(
−r2

2

)
+ ε

6 sin 2θ

r2

(
1 +

r2

2
+
r4

12
− e−r

2/2

)
e−r

2 exp(εr2 sin 2θ)/2 + O(ε2). (A 8)

Thus, the corrections to the streamfunction in Region II are exponentially small and
therefore the terms of L4 are small compared to L1, and both are exponentially
smaller than the terms of L3.
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Using (A8), the streamfunction in Region II may be represented as

Ψ = −
∫ r

0

(
1− e−ρ

2/2
) 1

ρ
dρ− εr2 sin 2θ

+ ε
6 sin 2θ

r2

(
1 +

r2

2
+
r4

12
− e−r

2/2

)
e−r

2 exp(εr2 sin 2θ)/2 + O(ε2),

where we have replaced the − ln r term by the exact streamfunction for the Burgers
vortex.

Appendix B. The convection–diffusion equation
Here we solve the convection–diffusion equation (3.44) subject to arbitrary initial

and boundary conditions. First, introducing the transformation

X = x̂e(1+λ)t, Y = ŷe(1−λ)t, Ω(X,Y , t) = ω(Xe−(1+λ)t, Y e−(1−λ)t, t), (B 1)

yields

∂Ω

∂t
= 2Ω + e2(1+λ)t ∂

2Ω

∂X2
+ e2(1−λ)t ∂

2Ω

∂Y 2
, (B 2)

with initial distribution and boundary conditions

ω(Xe−(1+λ)t, 0, t) = Ω(X, 0, t), −∞ < x < ∞, (B 3)

ω(x, y, 0) = Ω(X,Y , 0), −∞ < x < ∞, 0 < y < ∞. (B 4)

Taking the Fourier transform in X,

Ω̃(k1, Y , t) =
1

2π

∫ ∞
−∞
Ωeik1XdX, Ω(X,Y , t) =

∫ ∞
−∞
Ω̃e−ik1Xdk1, (B 5)

and then taking the Fourier sine transform in Y,

Ω̂(k1, k2, t) =
2

π

∫ ∞
0

Ω̃ sin (k2Y ) dY , Ω̃(k1, Y , t) =

∫ ∞
0

Ω̂ sin (k2Y ) dk2, (B 6)

the equation becomes

∂Ω̂

∂t
= Ω̂

(
2− k2

1e2(1+λ)t − k2
2e2(1−λ)t)+

2

π
k2e

2(1−λ)tΩ̃(k1, 0, t). (B 7)

Writing this in terms of a derivative prefactor, F(k1, k2, t),

d

dt

[
F(k1, k2, t)Ω̂(k1, k2, t)

]
=

2

π
k2e

2(1−λ)tF(k1, k2, t)Ω̃(k1, 0, t), (B 8)

F(k1, k2, t) = e−2tG1 (λ, t)G2 (λ, t) , (B 9)

Gn(λ, t) = exp

[
k2
ne

2(1−(−1)nλ)t

2 (1− (−1)n λ)

]
. (B 10)

Upon integrating over time and solving for Ω̂(k1, k2, t), we find

Ω̂(k1, k2, t) = Ω̂(k1, k2, 0) exp [2t]
G1(λ, 0)

G1(λ, t)

G2(λ, 0)

G2(λ, t)

+
2

π
k2

∫ t

0

Ω̃(k1, 0, τ) exp [2t− 2λτ]
G1(λ, τ)

G1(λ, t)

G2(λ, τ)

G2(λ, t)
dτ. (B 11)
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Transforming the vorticity back into physical space yields

Ω(X,Y , t) = e2t

∫ ∞
−∞

∫ ∞
0

Ω̂(k1, k2, 0)
G1(λ, 0)

G1(λ, t)

G2(λ, 0)

G2(λ, t)
e−ik1X sin (k2Y ) dk1dk2

+

(
2

π

)1/2 ∫ t

0

e2t−2λτ

(λ− 1)3/2 Y exp

[
(1− λ)Y 2/2

e2(1−λ)τ − e2(1−λ)t

]
(e2(1−λ)t − e2(1−λ)τ)3/2

×
∫ ∞
−∞
Ω̃(k1, 0, τ)

G1(λ, τ)

G1(λ, t)
e−ik1Xdk1dτ. (B 12)

We gratefully acknowledge helpful discussions with David Hill, James Buntine, and
Ron Henderson. This research was partial supported by NSF Grant CTS-9634222.

REFERENCES

Abramowitz, M. & Stegun, I. A. 1972 Handbook of Mathematical Functions. Nat. Bur. Standards;
Dover.

Ashurst, W. T., Kerstein, A. R., Kerr, R. M. & Gibson. C. H. 1987 Alignment of vorticity and
scalar gradient with strain in simulated Navier–Stokes turbulence. Phys. Fluids 30, 2343–2353.

Bajer, K. & Moffatt. H. K. 1997 On the effect of a central vortex on a stretched magnetic-flux
tube. J. Fluid Mech. 339, 121–142.

Berry, M. 1991 Asymptotics, superasymptotics, hyperasymptotics. In Asymptotics Beyond all Orders
(ed. H. Segur, S. Tanveer & H. Levine). Plenum.

Buntine, J. D. & Pullin, D. I. 1989 Merger and cancellation of strained vortices. J. Fluid Mech.
205, 263–295.

Burgers, J. M. 1948 A mathematical model illustrating the theory of turbulence. Adv. Appl. Mech.
1, 171–199.

Douady, S. Couder, Y. & Brachet, M. E. 1991 Direct observation of the intermittency of intense
vorticity filaments in turbulence. Phys. Rev. Lett. 67, 983–986.
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